HomeAbout UsMembersNews/PublicationsBlogPhotosContact Us

CCS has the potential to significantly reduce global carbon emissions.


Environmental NGO groups in favour of CCS

by Guest Author on 03/28/14

This is a ZeroCO2.No cross-post written by Camilla Svendsen-Skriung, a member of the ENGO Network on CCS.

Wired claims that environmentalists are actively working against CCS in an article this week, but the ENGO Network on CCS has promoted CCS as a part of the climate solution since 2011.

Wired magazine published a thorough article about clean coal this week. They argue, as do several international organizations like the IEA, that the world needs clean coal in addition to renewable energy to meet the future energy needs. However, the article also claims that environmentalists have lobbied hard against the technology and that the technology is being scoffed by the same group.

It is true that some NGOs are sceptical towards CCS, and that some even work and argue against it. But that is only part of the picture.

As would be expected, our organisations approached CCS with caution, says Camilla Svendsen Skriung, political adviser in ZERO and member of the ENGO Network on CCS.

Several environmental NGOs oppose CCS because they consider storage to be unsafe and that CCS expands the usage of fossil fuels and displaces renewable energy sources. In the light of this it is important for those ENGOs who accept that CCS is necessary to reach the two-degree goal to cooperate and to be well coordinated. This is the background for establishing the ENGO network.

The international ENGO Newtwork on CCS has established an efficient information channel for environmental organisations that work with CCS and is a solid platform for a united voice in international forums.

Having a network for environmental organisations that view CCS as a climate solution is invaluable. These 10 reputable ENGOs are central figures in the international climate battle. By working together, having a united voice and standpoints, they become a stronger political force internationally. Thus these organisations can support each other’s work to influence national authorities and other stakeholders.

After a long and careful study of the available science, we have concluded that CCS can be carried out safely and effectively, provided it is adequately regulated. Our conclusions are based on, and are backed by, an overwhelming consensus of the scientific literature and prominent research institutions, Skriung Svendsen continues.

Good and thorough articles on CCS are always welcome, but one should recognize that several environmental NGOs acknowledge CCS as a part of the climate solution.

Reaching Out on CCS, an ENGO perspective

by Guest Author on 03/26/14

This is a GCCSI Insights cross-post written by Chris Smith, ENGO Network on CCS coordinator.

How important is public engagement to carbon capture and storage (CCS) projects? According to participants at a February 26 Education Outreach Workshop at the Canadian Embassy in Washington DC, very. It can ultimately mean the success or failure of a project.

Mike Fernandez with the Government of Alberta welcomed those from industry, government, environmental non-governmental organisations (NGOs), academics and other stakeholders, who gathered to glean lessons learned from various case studies, research and other recommendations important for future CCS communications efforts.

Workshop goals included:

  • facilitating discussion in North America on the importance of educational outreach materials on CCS
  • improving access to current best practices
  • creating networks for future collaborations.

From my perspective, here are six key takeaway lessons from the workshop:
  1. K12 Education: One of the greatest challenges in K12 education outreach is the lack of awareness among teachers and education boards on energy, especially CCS technology. Helping to develop curriculum resources, as well as showing teachers where CCS fits into their required curriculum can be key to educating the educators. Among the tactics recommended for public education and outreach, partnering with a regional public broadcasting network in one case yielded significant results and led to the creation of a successful Teacher Training Program.
  2. Resources: The number of resources and initiatives related to CCS is increasing. It includes college and professional schools, project websites, research consortia, environmental groups, school curriculum resources and more.
  3. Challenges: You need a certain amount of energy literacy – in the climate change context and where energy comes from – before you begin educating people on CCS. Outreach challenges can include a concept called “strategic apathy,” where the audience has to navigate competing information needs, interests and topic complexities. Of course, budget constraints are an ongoing challenge.
  4. Communications materials: Visual materials can be powerful, especially print or digital publications that show at a glance – to scale – the depths of geologic sequestration. Also, audiences continue to ask for more interactive communication materials such as video, websites, and other multimedia.
  5. Five steps for community engagement: 1) understand the local community context; 2) exchange information about the project; 3) identify the appropriate level of engagement; 4) discuss project risks and benefits; and 5) continue engagement through the project life cycle. As highlighted in the World Resources Institute's Guidelines for Community Engagement.
  6. What the public wants: Demonstrate early, project transparency and accessibility. Recent research also showed that education materials should be succinct and address 'what if' questions (eg, what if there’s a leak, what if there’s an earthquake?). Respondents were satisfied once these kinds of risks were addressed.

After the workshop I asked a couple of participants for their feedback. One of them said, “We have a strong understanding of how to communicate information about CCS to a variety of audiences – and about how to engage local communities where projects may be sited – but more resources are needed to develop next generation approaches that leverage today's technology and reach people in today's digitally-connected world.” Another commented, “It was nice to find that there is a lot of commonality.” Personally, I’m encouraged by workshops such as this. The need for increased communications continues to be an ongoing theme in all aspects of CCS, and one that must surely be addressed for ultimate project success. Also, many thanks are due to the Global CCS Institute and the Canadian Government for hosting this collaborative and beneficial forum.

For more workshop details, links to participant presentations can be found below:

Update on the Global CCS Institute’s Educational Outreach Program:

Experts Perspectives on current educational outreach experiences:

Update from the ‘Creating Core Messages’ group:

Experience from early CCS/CCUS demonstration projects on outreach work & next steps:


Putting it Back: How to Deploy Large-Scale CCS

by Guest Author on 12/16/13

This is a cross-post written by Ida Sofia Va, web journalist for ZERO. She writes about CCS-related topics for

ZERO recently released a report about policy instruments for large-scale CCS, which offers a thorough analysis of the policy-making instruments and suggestions on how to best implement CCS in Europe.

CCS has been met with some major setbacks lately, but it is not because of the lack of available technology. We know how to do it, but the problem seems to be on the policy-making side of CCS, says Camilla Svendsen Skriung, Policy Adviser for CCS in ZERO.

Once we create a market mechanism for CCS, the conditions for the industry will improve. We suggest a shared responsibility system, where the producers of fossil fuels have the obligation to buy a certificate from the developers of CCS projects. This way the industry will have an incentive and a possibility to deploy CCS.

Considerable improvements in framework conditions are required to trigger sufficient development and implementation of CCS. In order to meet this major challenge, ZERO has carried out an analysis to contribute to bringing CCS instruments onto the political agenda and closer to implementation.

The overall target of the report is to carry out a study of policy instruments for realisation of large-scale deployment of CCS, to identify the instruments best suited and to propose specific recommendations for the way forward towards sufficient large-scale CCS implementation.

The report is part of ZERO’s work to achieve the necessary deployment of large-scale carbon capture and storage (CCS), as one important mitigation solution to solve the climate challenge.

There are many studies concerning the question of how to ensure the technological up-scaling of CCS and instruments for this learning phase, but we have gone one step further and considered the following question: What are the policy instruments that will take development beyond the first demonstration projects, to the several hundreds of CCS projects?

For large-scale industry applications as CCS, 2020 is nearly here and 2030 is not far away. Long-term predictable frameworks are crucial to boost the speed of needed investments and development. Short-term challenges are important but must not take the focus away from putting long-term policy instruments in place.

In order to ensure large-scale deployment of CCS, ZERO considers a mix of instruments indispensable: at the core, an instrument giving sufficient incentive to make business cases for CCS viable and trigger investments in deployment and innovation. For industry to embark on large-scale investments, a long-term predictable framework is needed.  The best policy instrument for up-scaling of CCS deployment to emerge from this analysis is a CCS certificate system combined with an appropriate EPS. The certificate system finances the cost for CCS deployment through a cost-sharing model, while the EPS sets a very clear regulation, stopping investments in high-emission conventional solutions.

ZERO hopes, and thinks, this work will be of interest and contribute to spark the deployment of CCS on a large scale. The next step is of course to develop an effective framework for CCS, and not the least: to implement it and get it to work.

Link to the report:


Do CO2 Injections Pose Risk of Harmful Earthquakes?

by Guest Author on 11/07/13

This post was written by CATF's Senior Geologist Bruce Hill and originally appeared in CATF's Ahead of the Curve.

How common are measurable earthquakes in association with oilfield operations? The answer is: exceedingly rare.  Nevertheless, another scientific paper has raised the possibility of seismic events occurring as a result of injection of CO2 to stimulate new oil production from depleted oil fields.  Since this process, known as enhanced oil recovery (EOR), is a vital component of making carbon capture and storage (CCS) economically viable as a means of addressing global climate change, we must take a close look at the facts.  So here’s what we know:

On November 4, the Proceedings of the National Academy of Sciences (PNAS) released a paper on seismicity that may have been induced by injections of gases in a West Texas oilfield. The oilfield studied, near Snyder Texas, has been subject to injection-related production stimulation since 1957.   In the present study, authors report minor seismicity recorded between 2006 and 2011 with 18 earthquakes. Of the 18 recorded events, 17 were Richter magnitude 3 (associated with barely or unnoticeable ground shaking) and one was a magnitude 4.3 (ground shaking capable of rattling dishes but not significant harm).  To put this in perspective, according to the U.S. Geological Survey (USGS), worldwide there are an estimated 1.3 million earthquakes between magnitude of 2.0 and 2.9, 130,000 earthquakes between 3.0 and 3.9 and 13,000 earthquakes between magnitudes 4.0 and 5.0 annually. None of the seismicity halted injection; instead the operators paid extra attention to optimizing the injection rates.

The study further points out that in the adjacent and well-known SACROC field– in the same town of Snyder, Texas that has been undergoing CO2 flooding for 40 years– that there has been no induced seismicity. In fact, CO2 enhanced oil recovery (EOR) was born in these fields, having been in operation since 1971. Since then, over four decades of experience of CO2 management with approximately one billion metric tons of CO2 injected over that period in tens of thousands of wells has produced one and a half billion barrels of oil. But, only three known earthquakes greater than 4.0 magnitude have been recorded during oilfield water flooding, and none known to be associated with CO2 flooding, according to the complete review of seismic events associated with energy technology in the United States published by The National Academy of Sciences (NAS, 2012).

It is well known that tiny earthquakes – those that impart an energy release at a depth of a kilometer similar to dropping a gallon of milk on the floor – can be associated with tiny cracks that may form to accommodate fluids injected into the pores of rocks. Such seismicity (known as microseismicity) is only measurable with extremely sensitive instruments, and do not represent precursors to major events nor do they signal movement on known or unknown faults. In fact, in EOR, operators take pains to ensure that rocks are not over pressured and inadvertently fracked because fractures allow CO2 to circumvent the oil-filled pores rather than to sweep the oil out. In fact, fracking is avoided in EOR and carbon storage because it will severely reduce the effectiveness of the spread of CO2 through the formation pores. Instead, EOR takes place in a pressure-depleted reservoir and rebuilds pressure towards minimum miscibility-the point at which CO2 mixes with the oil to most effectively move it out of the rock. This process takes place well below the rock fracture point. In a carbon storage regime, operators will focus on “concurrent storage”, that is, normal operations with added monitoring and accounting–related surveillance. If operators desire to undertake storage alone, then, under current rules, they must operate EPA’s Underground Injection Control Rule that requires remaining well below the frac pressure at 90% of the rock strength.

CO2 injection operations are commonplace in the US. Today 4,000 miles of CO2 pipelines connect to 127 projects producing over 100 million barrels of oil annually utilizing 57 million metric tons of CO2. Furthermore, there are over 100,000 wells undergoing water flooding today and another 13,000 wells undergoing CO2 flooding. After decades of operations, wastewater disposal has also been associated with only eight events that have been actually felt by nearby residents, none of which have been associated with significant damage. Moreover, over 4 billion tons of fluids are injected into the subsurface in over 30,000 wells every year in the United States and minor induced seismicity is limited to a few fields. While the experience with CO2 injection for carbon storage projects is small, according to the 2012 NAS study, there are no known historically felt events and none with a magnitude of 2.0 or greater. Why is this? Storage of CO2 in oilfields is accompanied typically by production of water, hydrocarbons and CO2 resulting in a balancing of subsurface pressure. In fact “stacked storage” in oil and gas field using associated brine formations, may prove advantageous in a number of ways including the opportunity for pressure management by fluid production.

Induced seismicity associated with oil and gas operations continues to be an issue of interest to policymakers, though, following a 2012 paper by Stanford researchers Mark Zoback and Steve Gorelick relative to future ability of deep subsurface geologic formations to accept and contain large volumes of injected CO2 captured from power plants. However, MIT researchers Ruben Juanez, Brad Hagar and Howard Herzog penned a PNAS rebuttal to that study pointing out that earthquakes largely occur in crystalline “basement” rocks that lie beneath the many thousands of feet of sedimentary reservoir rocks where oil and gas deposits occur, or where CO2 might be stored.  Injections into those sedimentary rocks are very unlikely to trigger an earthquake in the underlying crystalline basement rocks. CATF has also addressed that study on our own website.

How do we avoid causing earthquakes? Despite the vanishingly small risk of damaging earthquakes with CO2 injections, careful site selection, risk analysis, constant surveillance and injection management must be essential components of healthy geologic carbon storage projects, particularly in seismically active areas.  Carbon storage sites should be carefully screened, and those posing high seismic (or other) risk should be avoided or management systems employed. Monitoring of CO2 injections should include pressure management and tracking of subsurface CO2 plumes relative to geologic structures.

So, the recent PNAS paper provides further understanding of into seismicity associated with subsurface injection of CO2, but it is important to note that in the paper, the authors correctly put their results in perspective, stating: “The fact that no other gas injection sites have reported earthquakes with magnitudes as large as 3, suggests that despite Zoback and Gorelick’s (2012) concerns it is possible that in many locations large volume CO2 injection may not induce earthquakes.”

CCS: Sparking Deployment

by Guest Author on 11/07/13

This post was written by David Hawkins, NRDC Director of Climate Programs, and originally appeared on GCCSI's Insights.

I came away from the Global CCS Institute’s eighth annual Members' meeting in Seoul earlier this month with a feeling of frustration that I sense many attendees shared. Though I suspect the reasons for my frustration may differ from many of the other attendees.

At the meeting, there was much discussion of the sluggish pace of carbon capture and storage (CCS) deployment and the modest level of government support for CCS – a level most participants believe is well below what is needed to get more of the first commercial round of CCS projects financed and built.

There was little in the way of assessment of the reasons for this state of affairs and this is what has been on my mind since the meeting. In my view, the general lack of support, both political and financial, for CCS can be tied to two large factors: the attitude of most governments and industries regarding the need for serious, near-term action to abate climate-disrupting emissions – an attitude which is a mixture of lip service, indifference, and outright hostility; and the attitude of most environmental organisations toward CCS – a mixture of vocal support from a few and indifference and outright hostility from many.

This piece is to suggest what I think industry leaders can and must do to help change the situation.

First, industry leaders need to decide it is time to go all in on the matter of greenhouse gas (GHG) mitigation policies. The truth is that most governments will never provide the level of support that pioneer CCS efforts need and most businesses will never spend the private capital required until the world’s biggest emitting countries embrace serious mitigation efforts. Industry’s stance on this matter is critical. Without active support for serious policies from business, governments will continue as they have for too long, with tentative, toe-in-the water programs that fail to provide the policy framework to make CCS viable as a meaningful part of a strategy.

Many business people of good faith have hesitated to organise a serious advocacy effort for GHG mitigation because they fear the policies that may be adopted will harm their business interests. This stance, while understandable, ignores the growing reality that ignoring climate disruption poses even greater risks to business interests, especially in the energy area.

Many in the fossil fuel sector say they want technologies like CCS to be perfected before they can endorse policies that would make such technologies a rational best practice. But this creates a chicken and egg dilemma, where hesitation on the policy front creates hesitation on deployment of technologies like CCS. In my view, if business waits until political pressures to deal with climate disruption are so enormous that governments are forced to respond, the policy chicken that emerges is not likely to be designed to lay many CCS eggs. If there has been no meaningful political constituency developed for CCS, why would one expect policymakers to prioritise CCS when they respond to demands for action?

Which brings me to the second big problem that business needs to confront more effectively: the fact that the core constituency for action to protect the climate – environmentalists, clean energy advocates, progressives – are mostly either lukewarm or hostile to CCS. This is not a new point; it is one I have made repeatedly to business audiences going on 15 years now.

Part of the reason for the persistent hostility from the "green" community is their view (mostly accurate) of the fossil fuel sector's position on climate protection. Given the mixture of opposition and hesitation to emission abatement policies from this sector, the view of the "green" community is that CCS is not really a tool to enable serious emission cuts but is rather the premise for an argument to delay adoption of climate protection policies. A cursory Google search will produce far too many examples of fossil fuel spokespersons arguing that policy change must await the further development of CCS, a development that seems always to be a decade or more in the future.

In the US, we are witnessing the latest example of the "CCS yes, but not yet" syndrome. In response to the US Environment Protection Agency's (EPA) proposal to base emission limits for new coal plants on partial CCS, most in industry are declaring that this move means the death of coal and are busy creating a record of claims that CCS is just not ready.

US fossil fuel interests are at a crossroads with this rulemaking. If they persist in an effort to block the EPA"s rule by attempting to create a drumbeat that CCS is not an available technology, the result may be to further disenchant the green community and the public at large with the idea that CCS might be part of the climate protection solution set.

Another barrier to acceptance of CCS by the green community is the belief that if CCS is employed it will be at the expense of greater reliance on energy efficiency and renewables resources. Here again, I think there are things the proponents of CCS can do to reduce this conflict. (I am not suggesting there is nothing the green community can do to ease this conflict but the audience for this post is largely made up of CCS proponents.)

Part of the reason the green community sees CCS as a threat to efficiency and renewables is that CCS proponents often make the case for CCS by arguing that renewables are, and always will be, too expensive to get the job done. But this is not a proposition that many in the green community are going to accept as a given.  Hence an argument that relies on this claim is not likely to be persuasive.

There are a couple of lines of argument for CCS that are more persuasive (to me at least). The first is a gap-closing argument. Why not examine the most ambitious scenarios of renewables penetration in the literature and calculate the cumulative emissions from fossil energy use and other GHG emissions while renewables are being brought to the requisite scale? Under any scenarios with which I am familiar, there will be a very large amount of cumulative emissions under the best of circumstances. Every tonne of that cumulative "residual" adds to the risk of serious climate disruption. If CCS could reduce that residual substantially, why wouldn’t one want to include it in the solution set?


About this blog
A discussion of the issues and policies related to carbon capture and storage technology.*

 [Guest blogs welcome. Send an email to]
*Disclaimer: The opinions expressed by the authors and those providing comments are theirs alone, and do not necessarily reflect the position(s) of the ENGO Network on CCS.