HomeAbout UsMembersNews/PublicationsBlogPhotosContact Us

CCS has the potential to significantly reduce global carbon emissions.

About this blog
A discussion of the issues and policies related to carbon capture and storage technology.*

 [Guest blogs welcome. Send an email to]
*Disclaimer: The opinions expressed by the authors and those providing comments are theirs alone, and do not necessarily reflect the position(s) of the ENGO Network on CCS. 


Carbon capture leadership in Canada


This is a cross-post from Pembina, published November 4, 2015. The authors are Pembina Program Director Duncan Kenyon and Consulting Advisor Binnu Jeyakumar.

Momentum is growing in Canada for effective action on climate change — and specifically for policies that recognize how reliance on fossil fuels is creating real risks for our economy and environment. Decarbonization creates opportunities to implement a portfolio of solutions that includes renewable energy, energy efficiency and technologies like carbon capture and storage (CCS). The Pembina Institute recently published a backgrounder looking at this topic.

Quest Carbon Capture and Storage project in Fort Saskatchewan in September 2014. Photo: Pembina Institute.

CCS is one of a number of approaches that can help reduce carbon emissions on the scale required to combat dangerous climate change. Canada has taken action to foster the deployment of this technology with the completion of full-scale commercial CCS projects. We have also implemented policy and regulatory changes to support CCS, and created a strong research and technology development ecosystem. We have compiled a list of significant Canadian actions taken on CCS to date.

In early November, another step will be taken as the Quest CCS project officially begins operations at Shell Canada’s Scotford upgrader outside Edmonton. The project will reduce emissions by sequestering more than one million tonnes of carbon dioxide per year deep underground in a saline aquifer.

With the Quest project, and other Alberta-based CCS projects and programs, there is an opportunity to create a carbon capture, utilization and storage hub — that is, a network of carbon pipelines plus capture and storage sites. Developing this hub would capitalize on federal and provincial investment in CCS knowledge, expertise and capacity, while also helping to manage the significant emissions from Alberta’s industrial sources.

The time is right for the federal and provincial governments to implement comprehensive climate policies that will drive economy-wide reductions in emissions. The work that has already been done on CCS in Canada can help inform where that technology fits into a full portfolio of climate mitigation solutions. Now is the time for a meaningful dialogue about what these solutions could be in Canada, and how they could achieve deep decarbonization of our society.

The role of carbon capture in deep decarbonization


This is a cross-post from Pembina, published October 26, 2015. The authors are Pembina Program Director Duncan Kenyon and Consulting Advisor Binnu Jeyakumar.

Technologies that capture greenhouse gases and either store or use them could play a significant and essential role in decarbonizing our world. But carbon capture and storage (CCS) has been a topic of debate over the last few years as governments, industry, environmental organizations and civil society navigate the considerations and implications of the technologies — something the Pembina Institute discussed in a recent backgrounder.

The role of CCS in decarbonization
Reducing carbon emissions at a global scale is undeniably a major challenge. To limit global temperature increases to two degrees Celsius of warming, emissions need to be cut by at least 40 per cent below 2010 levels by 2050, and to be near or below zero by 2a100.

 The challenge, as the International Energy Agency states, is that “the world must manage the legacy of its existing energy system, while harnessing established low-carbon energy sources and accelerating the development and deployment of new technologies that have yet to be adopted at scale.” Most of the pathways for reducing carbon emission, such as those modelled by IEA and Intergovernmental Panel on Climate Change, include a variety of measures. These include efficiency improvements, increased renewable energy and reforestation, along with carbon capture for fossil fuels.

For carbon-intensive energy sources that already exist, or that are under construction, emissions are essentially “locked in” — the infrastructure has been built and will probably continue to be used. CCS is the only way that these extremely widespread fossil fuel assets can continue to be used to close to their full lifespan while taking action on emissions. It is also a critical measure for cutting emissions from sectors that do not have many alternatives in the medium term.

CCS is particularly relevant for four areas. First, it can be applied to coal-fired electricity generation in China and India, and also in the United States as their generation switches from coal to natural gas. Similarly, CCS has a role to play in emerging economies that have large fossil fuel reserves, and that are locking into economic and energy policies that virtually ensure the continued emission of CO2 well into the future.

There are also a number of industries with significant emissions profiles, but few alternative technologies at this time. These include oil and gas refining, as well as the production of fertilizers, steel, cement and petrochemicals. Doing what is possible to reduce their emissions is common sense.

And finally, bioenergy paired with CCS is one of the few climate solutions that can actually achieve negative net emissions and generate energy — it would actually remove carbon dioxide from our atmosphere. That clearly makes it worth exploring.

The scale of CCS deployment needed to decarbonize industries mentioned above is massive. When projecting pathways to a climate-safe future, the IEA predicts that we will need to capture 52 billion tonnes of carbon dioxide from 2015 through 2040 in the electricity and industrial sectors. To put this number in perspective, the 13 large-scale CCS facilities that currently exist capture 28 million tonnes of carbon per year —less than one percent of what the IEA is calling for.

Key considerations
Before CCS can be widely deployed, several important issues need to be addressed. First, what level of carbon pricing is needed to incentivize CCS or carbon capture and utilization? This carbon price may vary depending on the industry that CCS is implemented in.

There are local environmental concerns to consider as. carbon emissions are not the only problem with fossil fuels. Whatever benefits CCS provides, there’s still the question of addressing the significant local environmental impacts — on biodiversity, land, water and air — associated with fossil fuel extraction.

And finally, we need to reconcile short-term measures with long-term goals. A balance needs to be struck between promoting CCS, which ultimately relies on sources of carbon emissions, and encouraging the development and deployment of other technologies that will make those emissions sources obsolete. Similarly, the threat of climate change necessitates some more fundamental societal, economic and political changes in how we manage our resources and energy systems — and those changes are not inherent in a CCS-based strategy.

At this point, Canada needs to articulate a comprehensive strategy that not only achieves significant carbon reductions through CCS, but is also aligned with meaningful action on climate change — in both the short and long terms.

One Year After Boundary Dam: CCS in Action


This is a cross-post from Bellona, published October 13, 2015. The author is Bellona Europe Director Jonas Helseth.

One year ago we saw the first commercial carbon capture and storage (CCS) project come into operation at SaskPower’s coal plant in Saskatchewan, Canada. One year later, its results have been better than expected, illustrating the commercial readiness of CCS technologies. Apart from good news for further investments in CCS projects, this makes a real difference to our climate mitigating actions.

To those who say CCS is unproven on industrial scale: It was proven years ago for several industries and now Boundary Dam has proven it in the power sector. What is more, Boundary Dam’s engineers claim they can now reduce costs by at least 30 percent for another CCS project. Climate science has been crystal clear that we desperately need CCS deployment, and now there are no more excuses for inaction.

The project retrofitted Unit 3 of the power plant with post combustion capture technology. The captured CO2 is sold and transported through pipelines to an enhanced oil recovery facility. The project has managed to capture 90 per cent of the CO2 originally emitted, proving that CCS is a highly efficient tool to limit global CO2 emissions. Furthermore, the plant has managed to produce more power than expected.

The Boundary Dam CCS project has during its short time of operation won several prizes, including the Edison Electrical Institute’s Edison Award, which is one of the most prestigious honours in power generation. It has also garnered the attention of National Geographic, which has listed the project as one of 10 energy breakthroughs that could make a real impact on the world.

There are currently several CCS project on the way globally, however Boundary Dam was the first full-scale project that actually took the final step toward commercialisation. The possibility to clean up coal power plants is essential in a climate action perspective. China, India and Southeast Asia are regions that heavily rely on coal as an energy source and still will in the near future. Therefore, it is great news to see a successful CCS project up and running. Further large scale CCS application will be needed to make the transition to a low carbon economy.

What the EPA Rules Mean for Carbon Capture and Storage


This is a cross-post from C2ES, originally published August 19, 2015. The author is Solutions Fellow Patrick Falwell, with C2ES.

In its final rules for limiting carbon dioxide emissions from new and existing power plants, EPA recognized the importance of carbon capture and storage technologies to achieving U.S. carbon reduction goals.

New coal-fired power plants will likely need to capture some portion of potential emissions to meet final federal standards for emissions. While not required, existing coal and natural gas power plants may pursue carbon capture and storage (CCS) to meet state emissions targets under the final Clean Power Plan.

However, a regulatory requirement for CCS does not guarantee the development of commercial-scale projects, and additional work will be needed to address the economic barriers to CCS.

In the rule covering new power plants, EPA confirmed its original finding that CCS is technically available and feasible to implement. EPA’s final rule set an emissions standard of 1,400 pounds of carbon dioxide (CO2) per megawatt-hour (MWh) of electricity generated. This is less stringent than the 1,100 lbs CO2/MWh limit originally proposed. But given that the most efficient coal plant without CCS is still likely to emit around 1,700 lbs CO2/MWh, adopting CCS is likely required.

EPA justified its conclusion by citing the experience to date in deploying CCS technology. This includes the successful launch of the world’s first commercial-scale CCS power plant by SaskPower in Saskatchewan in 2014, two commercial-scale projects under construction in the United States in Mississippi and Texas, a variety of CCS projects at industrial facilities, and numerous demonstration-scale CCS projects. In addition, EPA noted that Linde and BASF offer a performance guarantee for their joint carbon capture technology and that other well-established companies actively market CCS technology and express confidence in the technology’s ability to perform well.

Despite EPA’s confidence in CCS’s availability, it does not foresee new coal plants, with or without CCS, going forward between now and 2020. The ability of low-cost natural gas and renewables to meet new demand for electricity or replace retiring power plant capacity has and will likely continue to eliminate the need for new coal capacity. In the event that new coal capacity becomes necessary, the rule makes sure that CCS is used to reduce potential CO2 emissions.

Overall, EPA’s power plant rules provide regulatory context for CCS, but CCS remains a relatively expensive option in the power sector. Like with any other emerging technology, the cost of carbon capture will come down over time through the repeated deployment of commercial-scale projects that can provide insights into how costs can be reduced. SaskPower estimates it could build its next CCS power project at 30 percent less expense, with even greater cost reductions for the project after that. In addition, the ability to sell captured CO2 for utilization in opportunities like enhanced oil recovery (EOR) creates revenue to offset the cost and risk of investing in CCS. Most of the existing or under-construction CCS projects take or intend to take advantage of EOR.

Given that coal and natural gas are expected to continue to be a major source of energy in the United States and globally for years to come, investing in CCS and getting more commercial-scale projects under development should be a priority.


Green light for carbon capture in Oslo


This is a cross-post from Bellona, originally published June 4, 2015. The author is Marika Andersen, EU Policy and Communication Adviser for Bellona.

Bellona is encouraged to see our partners at the Oslo energy recovery agency EGE moving ahead with this project, which Bellona has closely supported from the outset.

– Oslo can take a leadership role in the development of technologies related to carbon capture from waste combustion plants, and help lift the processing of sorted waste to a new level, the Governing Mayor of Oslo, Stian Berger Røsland (Conservative party) said.

Carbon negative potential

The Norwegian environmental NGO Bellona Foundation, an advocate for Carbon Capture and Storage technology since the 1990s, has been working for years with this facility.  They celebrate this decision as Klemetsrud could become the first carbon-negative installation in Europe.

– This project, with potential to achieve carbon negative emissions, brings new momentum to European efforts on CCS. We hope that the project can be realized fast as we need to show politicians it’s possible to do a lot more. Seeing is believing, Bellona President Frederic Hauge said.

As biomass takes up CO2 when it grows, by capturing the CO2 resulting from its combustion excess CO2 is removed from the atmosphere.

The IPCC is very clear that such carbon negative solutions will also be needed on a massive scale to keep global warming below 2 degrees.

Major emission reductions

The Klemetsrud plant is one of Norway’s largest land-based industrial sites and has a large source of CO2 emissions, with annual emissions of approximately 300,000 tons. Removing these emissions will be a significant contribution to achieving the Oslo climate targets for 2030 and 2050.   Oslo’s Environment Commissioner Guri Melby (Liberal party) believes carbon capture is an important climate action, also in an international context.

Oslo City Council wants the Klemetsrud facility to become a national industrial pilot for carbon capture, and will make the facility available as an international test facility. The facility has continuous operation throughout the year with a long-term operation perspective, and is therefore a very good base for further development of carbon capture technology.


Urgency with carbon capture and storage of CO2


This is a cross-post by guest author Camilla Svendsen-Skriung with ZERO.   

One of the last things the coalition government did before it went off in 2013 was to shelve the full-scale plant at Mongstad. The present government promised that, despite this, they held on to the promise of a Norwegian CCS projects by 2020. A demanding position for the Minister of Petroleum and Energy, Tord Lien, who now must hammer out a new CCS policy for Norway.

The Department of Oil and Energy published  last week theGassnova report on potential full-scale CCS projects in Norway -  a pre-feasibility study.

The study shows that several industrial companies may be willing to consider CO2 capture and storage, but this is - not surprisingly - depending on the framework established by the state.

ZERO believes it is positive that Gassnova makes specific recommendations to facilitate further feasibility of CO2 capture at both Norcem and Yara facilities. That the body of waste treatment in Oslo, and further studies of CO2 capture at the Klemetsrud plant, is highlighted, is also good.

The study concludes on the other hand that a basis for investment decision for a CO2 capture project, at the earliest can be presented in autumn 2018. And this means that it will be very difficult to realize full-scale demonstration of CO2 capture in Norway by 2020.

ZERO said the study confirms the need and the good potential for CCS in Norway.  And that we have the ability to initiate measures to expedite the process towards the realization of a full-scale project. In other words, now we have to move forward in terms of Norwegian CCS policy. The goal put forward in the so called climate agreement to establish a Norwegian full-scale CCS projects by 2020, is an appropriate level of ambition and an achievable goal.
Less good is it when, as here, the authorities questions whether this goal is possible. The longer we hesitate now, the greater the chances that we do not succeed with a Norwegian CCS plants by 2020.

It is still within reach to organize and build a CCS project in three years, as the example of Saskatchewan in Canada shows, with the construction of the SaskPower’ Boundary Dam CCS project.

This is how it can be done:

1.The annual state budget for 2016 must have concrete and effective measures and adequate funding. ZERO proposes an expanded mandate and an increased allocation to Enova for CCS developments and implementation, in cooperation with Gassnova.

2. A grant of funds to one (or more) projects, after an application process, should come in 2017

3. 2017-2020: organization, construction and commissioning of a Norwegian full-scale CCS project

We believe that Tord Lien can get CCS on track. Norway needs through concrete action to show that the stated goal of Norwegian full-scale CCS still remains unchanged, and that Norway takes responsibility for its share of greenhouse cuts that are necessary to reach the international goal of a zero-emission society by 2050


Policy instruments for large scale CCS - ZERO

Scaling CO2 storage industry - Bellona



Geologic Carbon Storage: A Safe Bet.


This is a cross-post by guest author Bruce Hill with Clean Air Task Force.

Carbon capture and storage (CCS) has been identified as a critical technology to manage the transition to a low carbon economy, not just for power generation, but for industrial activitylike manufacturing cement and steel. Recent reports from the IPCC, the United Nations, and the International Agency have affirmed this role. 

The main mechanism for CCS is deep injection of CO2 and dissolution of the CO2 into the briny water in the rock pores combined with physically trapping the CO2 beneath thousands of feet of impermeable rock.  This is the way that nature has trapped oil and natural gas in geologic structures for tens to hundreds of millions of years.  Without this natural trapping and storage ability, we wouldn't have fossil fuels today. Geologic carbon storage takes advantage of this same natural capacity for storage. Numerous studies, and in-field tests, have demonstrated the feasibility, soundness and stability of this form of carbon storage.


Image: Storage of CO2 requires a permeable rock formation overlain by thousands of feet of rock impermeable to vertical flow. Source:

Geologic storage formations must be at great depth and overlain by a thick sequence of impermeable rock, capable of permanently trapping the CO2 whether it is in a liquid or gas form or dissolved in the formation water.  The ability to use deep geologic formations for storage is fully proven by the nearly 3 trillion cubic feet of natural gas currently stored by U.S. gas companies, which has been injected back into rock formations, stored for future use (See: And in fact, CO2 injection technology is well known with a four-decade long track record of safety beginning in 1972 in Texas for the purposes of stimulating oil production. 

There is an additional possible very long-term mechanism for CCS in addition to dissolution of CO2 in briny water and trapping underneath thousands of feet of impermeable rock.  That is “mineralization” – the transformation of CO2 into solid rock, bound up with other minerals. It has been speculated that this mechanism may provide an additional layer of protection over the scale of thousands to tens of thousands of years or more (see illustration below).  But the mineralization sequestration mechanism has a small role to play in geologic storage and has never been the primary focus of CCS in time scales meaningful to humans. 


Image: Mineralization plays a small role in trapping CO2 in a permeable saline formation.  Source:

Yet that is the unfortunate misimpression left by recent press coverage of a report from MIT. In a January 21 paper entitled Mechanisms for mechanical trapping of geologically sequestered Carbon dioxide, MIT researchers Yossi Cohen and Dan Rothman analyzed the processes of how CO2 is “mineralized” i.e., bound up in minerals, when it is injected into a rock formation as a climate mitigation strategy.  The researchers modeled the mechanics of how injected CO2 reacts with carbonate storage reservoir rock to form minerals. (see: The authors concluded that only “a small fraction of injected CO2 is converted to solid mineral.” 

The paper is sound science, but a misleading press release by MIT, and subsequent press coverage that followed that release, has unfortunately mischaracterized it.  The January 20 statement issued by the MIT press covering the paper was headlined, “Sequestration on Shaky Ground,” and subtitled: “Study finds a natural impediment to the long-term sequestration of carbon dioxide.” Further, the release included an animation suggesting CO2 “bubbles” migrating upwards through rock. Finally, the junior researcher on the study, post doc student, Yossi Cohen, is quoted as saying: 

 “If it [CO2] turns into rock, it’s stable and will remain there permanently. However, if it stays in its gaseous or liquid phase, it remains mobile and it can possibly return back to the atmosphere.” 

While we applaud the paper’s contribution to the understanding of the geochemical processes associated with carbon mineralization, the research did nothing to investigate the risk of injected CO2 returning to the atmosphere over any meaningful long-term time scale in the absence of this mechanism. The authors have clarified this point on their website ( 

As noted above, carbon sequestration through the formation of minerals is notthe mechanism by which geologists will ensure CO2 is permanently trapped in the subsurface. Instead, a robust geologic CO2 storage strategy combines several trapping mechanisms, including dissolution of the CO2 into the briny water in the rock pores combined with physically trapping the CO2 beneath thousands of feet of impermeable rock. The formation of minerals is a very long-term process that would not prove useful for addressing climate change if it were the chief mechanism for geologic carbon storage. In fact over long time periods, CO2 dissolved in formation water will actually become more dense and have a tendency to sink (see image below).


Image: CO2 moves upwards to the top seal. Over time the CO2 dissolves into the formation water. This makes it denser and it moves downwards. Source: 

To be sure, CO2 cannot be injected just any old place. U.S. regulations require that repositories for CO2 must be carefully selected and rigorously evaluated by geologists, geophysicists and engineers.  (See: In order to store fluids and gases, the rock must have the right properties. For example, the rock into which the CO2 is injected must be permeable and have adequate space in the rock pores to accommodate large volumes of fluids. This injection formation must lie in geologic structures beneath an extremely thick sequence of impermeable rocks that can trap the CO2. The minimum depths of injection must be greater than a half-mile in depth, and typically equivalent to several times the height of the new One World Trade Center, the tallest building in the U.S. 

Finally, the US Geological survey has investigated the capacity of deep US geologic formations to store CO2. It estimates 500 years of capacity for CO2 at today’s emissions rates.  (See:

So, to set the record straight, geologic storage is a proven technology that does not require the mineralization of the CO2 to ensure permanence, as the MIT press release incorrectly states.  The key to safe and permanent storage – past, present and future – is deep injection of CO2 below thick, impermeable geologic strata.

Norwegian development for CCS on industry and for use of CO2


This is a cross-post by guest author Camilla Svendsen-Skriung with ZERO.

These days some long awaited good news in the world of carbon capture and storage is coming along in Norway.

The CO2 capture test project that Heidelberg Cement/Norcem started spring 2013, has recently been accepted to prolong their research till 2016. The cement production stands for 5% of the CO2 emissions worldwide. It is therefore good news that the European Cement Research Academy (ECRA) and Norcem are successful frontrunners in the development of the mitigation technology on cement factories. The project in Brevik, Norway, capturing 10 000 tonnes CO2 a year, is testing four different technologies and Norcem reports that the results so far are even better than anticipated. The project is funded by the Norwegian state by 75% and is seeking to upscale and develop the whole chain of CCS, if further funded and if the state takes responsibility for developing the storage part.

In Kollsnes, near Bergen, EnPro is developing a facility which will use CO2 from the exhaust at the BKK gas power plant, to make soda ash. The soda can for example be used for soap, glass and paper. The Norwegian public enterprise Enova is funding the project with 40 million kroner, and EnPro are these days preparing the area where the facility will be built. Kollsnes BKK is producing power and heat based on waste gas from Gasnor's LNG plant. The CO2 emission is just over 30.000 tonnes per year. To use CO2 for different products can be a way of reducing emissions connected to fossil energy and industry, especially if it is further developed and even stored at the end of a life syclus. Projects like this are, in this context, very valuable.

U.S. Carbon Abatement Plans Signal Confidence in CCS Readiness


This is a post by guest author Stuart Haszeldine, professor of carbon capture and storage, SCCS, director, University of Edinburgh.

News from the United States this week could not have been more welcome: President Obama has sidestepped the US Congress to push through much-needed plans to curb carbon emissions from coal-fired power plants. With around 40% of America’s electricity still being generated from coal, the significance of this move cannot be downplayed.

The Environmental Protection Agency's (EPA) Clean Power Plan lays down the rules for cutting CO2 emissions by 30%, from around 1,600 power plants, by 2030. That the

world’s largest economy has taken this momentous decision marks a turning point in how that country perceives the threat of dangerous climate change. Indeed, every developed economy worldwide must take similar action to tackle greenhouse gas emissions or face both the physical and financial impacts of global warming.


The decision to follow through on the EPA’s proposals also suggests that President Obama’s administration believes the technology needed to abate these emissions – in other words, carbon capture and storage (CCS) – is ready to build and operate. This is in sharp contrast to the UK, where the civil service has achieved all the preparatory work in record time, yet the Government is playing a ‘go-slow’ game with its CCS Commercialisation Programme - and is yet to make any final investment decision onwhether to back two full-chain CCS demonstration projects.


The EPA is setting a good example by using regulatory instruments to drive progress on CCS, and emissions reductions from existing power plants. Here in the UK, the Emissions Performance Standard (EPS), legislated in the 2013 Energy Act, requires CCS on any new coal-fired power station – but the government has chosen not to apply EPS to existing coal power stations, or to emissions from existing and future gas-fired power generation. These new US rules show that emissions performance standards can drive change on existing sources of emissions in the coming years. The UK could consider using its existing EPS law, in order to greatly accelerate progress on the large-scale deployment of CCS technology.


At SCCS, we continue to point out that the two UK demonstration projects for CCS – even if they secure the necessary funding from HM Treasury to place the first spade in the ground – are still not enough to allow the UK to meet its carbon targets in the most cost-effective way. The UK must begin building at least 30 more such projects by 2025 to avoid incurring extra costs later. By doing so, alongside developing a sizeable CO2storage asset, the UK can future-proof itself against the 100% certainty of carbon taxes and global change.


Unfortunately, follow-on CCS projects in the UK are still stalling due to uncertainty and a drawn-out bureaucratic process. Three fully commercial – and at one time lauded – full-chain CCS projects await the UK Government’s use of market powers, which already exist, to kickstart development. All of these projects feature IGCC (integrated gasification combined cycle) technology that would use coal or other feedstock to create electricity, and initially use aquifers for storage – though all could pipe CO2 offshore to produce additional oil recovery from depleted fields, thereby storing carbon whilst meeting some costs through oil tax revenue.


This week’s developments in the US signal a shift towards enforcing CCS on all power plants, on at least a proportion of their power generation. We also know that CCS projects waiting in the wings are considering both pre- and post-combustion capture technology. So is the UK Government over-regulating prospective CCS developers? Will the provisions made to support CCS within a revised electricity market instead prevent innovation and learning, which any fledgling industry needs to streamline technology and bring down costs? 


Critics in the US have claimed that the new rules will cause power plants to close and electricity prices to rise. In the UK, a select committee of elected MPs – brought together to examine progress on CCS to date by the Government’s Department of Energy and Climate Change – released its report last month. It concluded that developing CCS technology would reduce wholesale electricity costs in 2030 by 20%, but that progress towards that objective was exceptionally slow. And the UK Energy Technologies Institute has calculated CCS will halve the economy-wide extra cost of delivering low-carbon power by 2050. So there are few excuses remaining to delay the deployment of CCS. This decision by the US administration is an acknowledgement by one of the world’s most powerful nations that CCS is both essential and achievable.

Scottish Carbon Capture & Storage (SCCS) is an independent research partnership of British Geological Survey, Heriot-Watt University, University of Aberdeen and the University of Edinburgh. Its researchers are engaged in high-level CCS research as well as joint projects with industry, with the aim of supporting the development and eventual commercialisation of CCS as a climate mitigation technology worldwide.


Reaching Out on CCS, an ENGO perspective


This is a GCCSI Insights cross-post written by Chris Smith, ENGO Network on CCS coordinator. 

How important is public engagement to carbon capture and storage (CCS) projects? According to participants at a February 26 Education Outreach Workshop at the Canadian Embassy in Washington DC, very. It can ultimately mean the success or failure of a project.

Mike Fernandez with the Government of Alberta welcomed those from industry, government, environmental non-governmental organisations (NGOs), academics and other stakeholders, who gathered to glean lessons learned from various case studies, research and other recommendations important for future CCS communications efforts.

Workshop goals included:

  • facilitating discussion in North America on the importance of educational outreach materials on CCS
  • improving access to current best practices
  • creating networks for future collaborations.

From my perspective, here are six key takeaway lessons from the workshop:
  1. K12 Education: One of the greatest challenges in K12 education outreach is the lack of awareness among teachers and education boards on energy, especially CCS technology. Helping to develop curriculum resources, as well as showing teachers where CCS fits into their required curriculum can be key to educating the educators. Among the tactics recommended for public education and outreach, partnering with a regional public broadcasting network in one case yielded significant results and led to the creation of a successful Teacher Training Program.
  2. Resources: The number of resources and initiatives related to CCS is increasing. It includes college and professional schools, project websites, research consortia, environmental groups, school curriculum resources and more.
  3. Challenges: You need a certain amount of energy literacy – in the climate change context and where energy comes from – before you begin educating people on CCS. Outreach challenges can include a concept called “strategic apathy,” where the audience has to navigate competing information needs, interests and topic complexities. Of course, budget constraints are an ongoing challenge.
  4. Communications materials: Visual materials can be powerful, especially print or digital publications that show at a glance – to scale – the depths of geologic sequestration. Also, audiences continue to ask for more interactive communication materials such as video, websites, and other multimedia.
  5. Five steps for community engagement: 1) understand the local community context; 2) exchange information about the project; 3) identify the appropriate level of engagement; 4) discuss project risks and benefits; and 5) continue engagement through the project life cycle. As highlighted in the World Resources Institute's Guidelines for Community Engagement.
  6. What the public wants: Demonstrate early, project transparency and accessibility. Recent research also showed that education materials should be succinct and address 'what if' questions (eg, what if there’s a leak, what if there’s an earthquake?). Respondents were satisfied once these kinds of risks were addressed.

After the workshop I asked a couple of participants for their feedback. One of them said, “We have a strong understanding of how to communicate information about CCS to a variety of audiences – and about how to engage local communities where projects may be sited – but more resources are needed to develop next generation approaches that leverage today's technology and reach people in today's digitally-connected world.” Another commented, “It was nice to find that there is a lot of commonality.” Personally, I’m encouraged by workshops such as this. The need for increased communications continues to be an ongoing theme in all aspects of CCS, and one that must surely be addressed for ultimate project success. Also, many thanks are due to the Global CCS Institute and the Canadian Government for hosting this collaborative and beneficial forum.

For more workshop details, links to participant presentations can be found below:

Update on the Global CCS Institute’s Educational Outreach Program:

Experts Perspectives on current educational outreach experiences:

Update from the ‘Creating Core Messages’ group:

Experience from early CCS/CCUS demonstration projects on outreach work & next steps:


Do CO2 Injections Pose Risk of Harmful Earthquakes?


This post was written by CATF's Senior Geologist Bruce Hill and originally appeared in CATF's Ahead of the Curve.

How common are measurable earthquakes in association with oilfield operations? The answer is: exceedingly rare.  Nevertheless, another scientific paper has raised the possibility of seismic events occurring as a result of injection of CO2 to stimulate new oil production from depleted oil fields.  Since this process, known as enhanced oil recovery (EOR), is a vital component of making carbon capture and storage (CCS) economically viable as a means of addressing global climate change, we must take a close look at the facts.  So here’s what we know:

On November 4, the Proceedings of the National Academy of Sciences (PNAS) released a paper on seismicity that may have been induced by injections of gases in a West Texas oilfield. The oilfield studied, near Snyder Texas, has been subject to injection-related production stimulation since 1957.   In the present study, authors report minor seismicity recorded between 2006 and 2011 with 18 earthquakes. Of the 18 recorded events, 17 were Richter magnitude 3 (associated with barely or unnoticeable ground shaking) and one was a magnitude 4.3 (ground shaking capable of rattling dishes but not significant harm).  To put this in perspective, according to the U.S. Geological Survey (USGS), worldwide there are an estimated 1.3 million earthquakes between magnitude of 2.0 and 2.9, 130,000 earthquakes between 3.0 and 3.9 and 13,000 earthquakes between magnitudes 4.0 and 5.0 annually. None of the seismicity halted injection; instead the operators paid extra attention to optimizing the injection rates.

The study further points out that in the adjacent and well-known SACROC field– in the same town of Snyder, Texas that has been undergoing CO2 flooding for 40 years– that there has been no induced seismicity. In fact, CO2 enhanced oil recovery (EOR) was born in these fields, having been in operation since 1971. Since then, over four decades of experience of CO2 management with approximately one billion metric tons of CO2 injected over that period in tens of thousands of wells has produced one and a half billion barrels of oil. But, only three known earthquakes greater than 4.0 magnitude have been recorded during oilfield water flooding, and none known to be associated with CO2 flooding, according to the complete review of seismic events associated with energy technology in the United States published by The National Academy of Sciences (NAS, 2012).

It is well known that tiny earthquakes – those that impart an energy release at a depth of a kilometer similar to dropping a gallon of milk on the floor – can be associated with tiny cracks that may form to accommodate fluids injected into the pores of rocks. Such seismicity (known as microseismicity) is only measurable with extremely sensitive instruments, and do not represent precursors to major events nor do they signal movement on known or unknown faults. In fact, in EOR, operators take pains to ensure that rocks are not over pressured and inadvertently fracked because fractures allow CO2 to circumvent the oil-filled pores rather than to sweep the oil out. In fact, fracking is avoided in EOR and carbon storage because it will severely reduce the effectiveness of the spread of CO2 through the formation pores. Instead, EOR takes place in a pressure-depleted reservoir and rebuilds pressure towards minimum miscibility-the point at which CO2 mixes with the oil to most effectively move it out of the rock. This process takes place well below the rock fracture point. In a carbon storage regime, operators will focus on “concurrent storage”, that is, normal operations with added monitoring and accounting–related surveillance. If operators desire to undertake storage alone, then, under current rules, they must operate EPA’s Underground Injection Control Rule that requires remaining well below the frac pressure at 90% of the rock strength.

CO2 injection operations are commonplace in the US. Today 4,000 miles of CO2 pipelines connect to 127 projects producing over 100 million barrels of oil annually utilizing 57 million metric tons of CO2. Furthermore, there are over 100,000 wells undergoing water flooding today and another 13,000 wells undergoing CO2 flooding. After decades of operations, wastewater disposal has also been associated with only eight events that have been actually felt by nearby residents, none of which have been associated with significant damage. Moreover, over 4 billion tons of fluids are injected into the subsurface in over 30,000 wells every year in the United States and minor induced seismicity is limited to a few fields. While the experience with CO2 injection for carbon storage projects is small, according to the 2012 NAS study, there are no known historically felt events and none with a magnitude of 2.0 or greater. Why is this? Storage of CO2 in oilfields is accompanied typically by production of water, hydrocarbons and CO2 resulting in a balancing of subsurface pressure. In fact “stacked storage” in oil and gas field using associated brine formations, may prove advantageous in a number of ways including the opportunity for pressure management by fluid production.

Induced seismicity associated with oil and gas operations continues to be an issue of interest to policymakers, though, following a 2012 paper by Stanford researchers Mark Zoback and Steve Gorelick relative to future ability of deep subsurface geologic formations to accept and contain large volumes of injected CO2 captured from power plants. However, MIT researchers Ruben Juanez, Brad Hagar and Howard Herzog penned a PNAS rebuttal to that study pointing out that earthquakes largely occur in crystalline “basement” rocks that lie beneath the many thousands of feet of sedimentary reservoir rocks where oil and gas deposits occur, or where CO2 might be stored.  Injections into those sedimentary rocks are very unlikely to trigger an earthquake in the underlying crystalline basement rocks. CATF has also addressed that study on our own website.

How do we avoid causing earthquakes? Despite the vanishingly small risk of damaging earthquakes with CO2 injections, careful site selection, risk analysis, constant surveillance and injection management must be essential components of healthy geologic carbon storage projects, particularly in seismically active areas.  Carbon storage sites should be carefully screened, and those posing high seismic (or other) risk should be avoided or management systems employed. Monitoring of CO2 injections should include pressure management and tracking of subsurface CO2 plumes relative to geologic structures.

So, the recent PNAS paper provides further understanding of into seismicity associated with subsurface injection of CO2, but it is important to note that in the paper, the authors correctly put their results in perspective, stating: “The fact that no other gas injection sites have reported earthquakes with magnitudes as large as 3, suggests that despite Zoback and Gorelick’s (2012) concerns it is possible that in many locations large volume CO2 injection may not induce earthquakes.”

North Sea oil platform decommissioning offers new opportunities for CCS


This is a cross-post by guest author Teodora Serafimova with Bellona.

The reality of the carbon bubble is becoming ever more pronounced. Following the filing of a resolution by Shell, whereby it committed itself to publishing detailed analyses of how its business plans go hand-in-hand with climate change objectives, it has made an announcement to decommission its North Sea oil platform, the Brent Delta. This in turn could translate into good news for the deployment of Carbon Capture and Storage (CCS) technology.

The dramatic decline in the oil price has resulted in big cuts in North Sea oil exploration and acceleration in the decommissioning of related infrastructure. Shell, one of the major oil companies involved in these developments, has recently announced plans to begin decommissioning the Brent Delta platform, weighing 23,500 tonnes and standing higher than the Eiffel Tower. (Read more on the reality of the carbon bubble and stranded assets here).

Shell plans to transport the platform by sea to Teesside for onshore demolition. Rig decommissioning may cost €20 billion over the next decade and 60% of those costs will ultimately be borne by the government through tax relief, getting economic and environmental value matters.

Recent research undertaken by Green Alliance which assesses the most cost effective and environmentally friendly ways of treating old rig infrastructure, concludes that the decommissioning of oil platforms could offer some promising opportunities for CCS. The study argues that the optimal treatment of old oil rig infrastructure would be not to remove it all, but rather repurpose it as part of a new CCS network. This would not only lower the cost of decommissioning, but would also facilitate the deployment of CCS and render it more cost effective. The viability of pipeline reuse for CCS infrastructure has already been demonstrated by the Peterhead CCS project. In order to deliver this effectively, careful planning of the links between potential sources and sinks, and collaboration across the oil and gas sector around the shared use of infrastructure would be required.

Bellona strongly supports the repurposing of oil and gas infrastructure for the development of CO2 transport and storage infrastructure. A growing CO2 storage industry has the potential to maintain high skilled employment across the North Sea as the hydrocarbon industry shrinks.  This offers promising opportunities for the recently launched Teesside Collective project, which will transport captured CO2 emissions via a shared pipeline network for permanent storage beneath the North Sea.

UK launches industrial CCS vision


This is a cross-post by guest author Teodora Serafimova with Bellona.

Major energy-intensive industrial plants in Teesside have launched their vision of accommodating Europe’s first Carbon Capture and Storage (CCS) equipped industrial zone. Teesside Collective aims to capture CO2 emissions and transport them via a shared pipeline network for permanent storage beneath the North Sea. Besides reaffirming the UK’s leadership position in industrial CCS development, retrofitting CCS in Teesside would entail significant benefits in terms of maintaining and growing the country’s industrial base and workforce, as well as ensuring climate change objectives are met.

What makes the Teesside Collective project different from other CCS projects in the UK is its focus on industrial emissions rather than emissions from electricity generation. Teesside represents 58% of the UK chemical industry and the Northeast process industries contribute around €35 billion/year to the UK economy. The region also accommodates the UK’s 25 most emission-intensive plants and regional emissions per person are almost three times the national average. By capturing 90% of the emissions, CCS would shield companies in Teesside from rising carbon permit costs.

For several energy-intensive industries, CCS as the only available technology to reduce emissions sufficiently in the foreseeable future” notes Jonas Helseth, Director at Bellona Europa, welcoming the launch of the Teesside Collective.

Tees Valley Unlimited, the Local Enterprise Partnership, has been awarded €1 million by the UK Department of Energy and Climate Change to develop a business case for deploying industrial CCS in the Teesside cluster and to make recommendations for a funding mechanism. This is to be completed by the summer of 2015.

Initial findings of engineering work on the site suggest that the project is feasible. Retrofitting the CCS technology to the four anchor projects’ different industrial processes, namely steel, ammonia, hydrogen and polyethylene terephthalate production, is operationally and technically feasible. What is more, Teesside is optimally located for the transportation of the carbon to permanent storage facilities under the Central or Southern North Sea.

Equipping the Teesside industrial zone with CCS would offer the benefit of reconciling the UK’s climate change and re-industrialisation objectives. Besides maintaining and expanding the industrial base and workforce, CCS would make an important contribution to reducing the UK’s CO2 emissions by 80% by 2050. In fact, a number of recent legislative outcomes and influential reports, such as the EU’s Energy Roadmap to 2050 and the IPCC’s 5th Assessment Report have confirmed the essence of CCS technologies and negative emissions, attained via Bio-CCS, to halt global temperature increase to 2°C.

Environmental NGO groups in favour of CCS


This is a ZeroCO2.No cross-post written by Camilla Svendsen-Skriung, a member of the ENGO Network on CCS.

Wired claims that environmentalists are actively working against CCS in an article this week, but the ENGO Network on CCS has promoted CCS as a part of the climate solution since 2011.

Wired magazine published a thorough article about clean coal this week. They argue, as do several international organizations like the IEA, that the world needs clean coal in addition to renewable energy to meet the future energy needs. However, the article also claims that environmentalists have lobbied hard against the technology and that the technology is being scoffed by the same group.

It is true that some NGOs are sceptical towards CCS, and that some even work and argue against it. But that is only part of the picture.

As would be expected, our organisations approached CCS with caution, says Camilla Svendsen Skriung, political adviser in ZERO and member of the ENGO Network on CCS.

Several environmental NGOs oppose CCS because they consider storage to be unsafe and that CCS expands the usage of fossil fuels and displaces renewable energy sources. In the light of this it is important for those ENGOs who accept that CCS is necessary to reach the two-degree goal to cooperate and to be well coordinated. This is the background for establishing the ENGO network.

The international ENGO Newtwork on CCS has established an efficient information channel for environmental organisations that work with CCS and is a solid platform for a united voice in international forums.

Having a network for environmental organisations that view CCS as a climate solution is invaluable. These 10 reputable ENGOs are central figures in the international climate battle. By working together, having a united voice and standpoints, they become a stronger political force internationally. Thus these organisations can support each other’s work to influence national authorities and other stakeholders.

After a long and careful study of the available science, we have concluded that CCS can be carried out safely and effectively, provided it is adequately regulated. Our conclusions are based on, and are backed by, an overwhelming consensus of the scientific literature and prominent research institutions, Skriung Svendsen continues.

Good and thorough articles on CCS are always welcome, but one should recognize that several environmental NGOs acknowledge CCS as a part of the climate solution.

Putting it Back: How to Deploy Large-Scale CCS


This is a cross-post written by Ida Sofia Va, web journalist for ZERO. She writes about CCS-related topics for

ZERO recently released a report about policy instruments for large-scale CCS, which offers a thorough analysis of the policy-making instruments and suggestions on how to best implement CCS in Europe.

CCS has been met with some major setbacks lately, but it is not because of the lack of available technology. We know how to do it, but the problem seems to be on the policy-making side of CCS, says Camilla Svendsen Skriung, Policy Adviser for CCS in ZERO.

Once we create a market mechanism for CCS, the conditions for the industry will improve. We suggest a shared responsibility system, where the producers of fossil fuels have the obligation to buy a certificate from the developers of CCS projects. This way the industry will have an incentive and a possibility to deploy CCS.

Considerable improvements in framework conditions are required to trigger sufficient development and implementation of CCS. In order to meet this major challenge, ZERO has carried out an analysis to contribute to bringing CCS instruments onto the political agenda and closer to implementation.

The overall target of the report is to carry out a study of policy instruments for realisation of large-scale deployment of CCS, to identify the instruments best suited and to propose specific recommendations for the way forward towards sufficient large-scale CCS implementation.

The report is part of ZERO’s work to achieve the necessary deployment of large-scale carbon capture and storage (CCS), as one important mitigation solution to solve the climate challenge.

There are many studies concerning the question of how to ensure the technological up-scaling of CCS and instruments for this learning phase, but we have gone one step further and considered the following question: What are the policy instruments that will take development beyond the first demonstration projects, to the several hundreds of CCS projects?

For large-scale industry applications as CCS, 2020 is nearly here and 2030 is not far away. Long-term predictable frameworks are crucial to boost the speed of needed investments and development. Short-term challenges are important but must not take the focus away from putting long-term policy instruments in place.

In order to ensure large-scale deployment of CCS, ZERO considers a mix of instruments indispensable: at the core, an instrument giving sufficient incentive to make business cases for CCS viable and trigger investments in deployment and innovation. For industry to embark on large-scale investments, a long-term predictable framework is needed.  The best policy instrument for up-scaling of CCS deployment to emerge from this analysis is a CCS certificate system combined with an appropriate EPS. The certificate system finances the cost for CCS deployment through a cost-sharing model, while the EPS sets a very clear regulation, stopping investments in high-emission conventional solutions.

ZERO hopes, and thinks, this work will be of interest and contribute to spark the deployment of CCS on a large scale. The next step is of course to develop an effective framework for CCS, and not the least: to implement it and get it to work.

Link to the report:


CCS: Sparking Deployment


This post was written by David Hawkins, NRDC Director of Climate Programs, and originally appeared on GCCSI's Insights.

I came away from the Global CCS Institute’s eighth annual Members' meeting in Seoul earlier this month with a feeling of frustration that I sense many attendees shared. Though I suspect the reasons for my frustration may differ from many of the other attendees.

At the meeting, there was much discussion of the sluggish pace of carbon capture and storage (CCS) deployment and the modest level of government support for CCS – a level most participants believe is well below what is needed to get more of the first commercial round of CCS projects financed and built.

There was little in the way of assessment of the reasons for this state of affairs and this is what has been on my mind since the meeting. In my view, the general lack of support, both political and financial, for CCS can be tied to two large factors: the attitude of most governments and industries regarding the need for serious, near-term action to abate climate-disrupting emissions – an attitude which is a mixture of lip service, indifference, and outright hostility; and the attitude of most environmental organisations toward CCS – a mixture of vocal support from a few and indifference and outright hostility from many.

This piece is to suggest what I think industry leaders can and must do to help change the situation.

First, industry leaders need to decide it is time to go all in on the matter of greenhouse gas (GHG) mitigation policies. The truth is that most governments will never provide the level of support that pioneer CCS efforts need and most businesses will never spend the private capital required until the world’s biggest emitting countries embrace serious mitigation efforts. Industry’s stance on this matter is critical. Without active support for serious policies from business, governments will continue as they have for too long, with tentative, toe-in-the water programs that fail to provide the policy framework to make CCS viable as a meaningful part of a strategy.

Many business people of good faith have hesitated to organise a serious advocacy effort for GHG mitigation because they fear the policies that may be adopted will harm their business interests. This stance, while understandable, ignores the growing reality that ignoring climate disruption poses even greater risks to business interests, especially in the energy area.

Many in the fossil fuel sector say they want technologies like CCS to be perfected before they can endorse policies that would make such technologies a rational best practice. But this creates a chicken and egg dilemma, where hesitation on the policy front creates hesitation on deployment of technologies like CCS. In my view, if business waits until political pressures to deal with climate disruption are so enormous that governments are forced to respond, the policy chicken that emerges is not likely to be designed to lay many CCS eggs. If there has been no meaningful political constituency developed for CCS, why would one expect policymakers to prioritise CCS when they respond to demands for action?

Which brings me to the second big problem that business needs to confront more effectively: the fact that the core constituency for action to protect the climate – environmentalists, clean energy advocates, progressives – are mostly either lukewarm or hostile to CCS. This is not a new point; it is one I have made repeatedly to business audiences going on 15 years now.

Part of the reason for the persistent hostility from the "green" community is their view (mostly accurate) of the fossil fuel sector's position on climate protection. Given the mixture of opposition and hesitation to emission abatement policies from this sector, the view of the "green" community is that CCS is not really a tool to enable serious emission cuts but is rather the premise for an argument to delay adoption of climate protection policies. A cursory Google search will produce far too many examples of fossil fuel spokespersons arguing that policy change must await the further development of CCS, a development that seems always to be a decade or more in the future.

In the US, we are witnessing the latest example of the "CCS yes, but not yet" syndrome. In response to the US Environment Protection Agency's (EPA) proposal to base emission limits for new coal plants on partial CCS, most in industry are declaring that this move means the death of coal and are busy creating a record of claims that CCS is just not ready.

US fossil fuel interests are at a crossroads with this rulemaking. If they persist in an effort to block the EPA"s rule by attempting to create a drumbeat that CCS is not an available technology, the result may be to further disenchant the green community and the public at large with the idea that CCS might be part of the climate protection solution set.

Another barrier to acceptance of CCS by the green community is the belief that if CCS is employed it will be at the expense of greater reliance on energy efficiency and renewables resources. Here again, I think there are things the proponents of CCS can do to reduce this conflict. (I am not suggesting there is nothing the green community can do to ease this conflict but the audience for this post is largely made up of CCS proponents.)

Part of the reason the green community sees CCS as a threat to efficiency and renewables is that CCS proponents often make the case for CCS by arguing that renewables are, and always will be, too expensive to get the job done. But this is not a proposition that many in the green community are going to accept as a given.  Hence an argument that relies on this claim is not likely to be persuasive.

There are a couple of lines of argument for CCS that are more persuasive (to me at least). The first is a gap-closing argument. Why not examine the most ambitious scenarios of renewables penetration in the literature and calculate the cumulative emissions from fossil energy use and other GHG emissions while renewables are being brought to the requisite scale? Under any scenarios with which I am familiar, there will be a very large amount of cumulative emissions under the best of circumstances. Every tonne of that cumulative "residual" adds to the risk of serious climate disruption. If CCS could reduce that residual substantially, why wouldn’t one want to include it in the solution set?


GCCSI Releases its Latest Report on the Status of CCS


This post was written by George Peridas of NRDC and originally appeared in NRDC Switchboard on Oct. 12, 2013.

The Global Carbon Capture & Storage Institute (GCCSI) just released its latest Global Status of CCS annual report, underscoring once again the important role of carbon capture and storage (CCS) in a world where fossil fuels continue to supply the bulk of our energy needs and where drastic reductions in carbon pollution are urgently needed. It also summarizes the status of the technology, recent progress, and needed actions by decision makers to make CCS a meaningful climate mitigation strategy.

The report is very readable and self-explanatory, but a couple of points are worth bringing out since they can be counter-intuitive or surprising to some.

“CCS technology is well understood, and a reality”

Contrary to claims being made in reaction to U.S. EPA’s new Carbon Pollution Standard for new power plants that CCS is not yet commercially available, the GCCSI report underscores that “[i]n reality, the technology is generally well understood and has been used for decades at a large scale in certain applications.”  More evidence is in the report itself and under Dan Lashof’s recent post here. Instead, GCCSI identifies that “[i]nsuffcient policy support is a key barrier”.

This is hardly surprising. In fact, we have been saying this for years now: Without a clear policy signal to the private sector and some government support for early projects, CCS technology will not achieve the scale of deployment needed to make a dent in tackling climate change.  However, policy makers continue to get it wrong, with the most striking current example being Europe, as my environmental NGO colleagues outline here.

“More projects are entering operation and construction”

We should be buoyed by the Institute’s findings on the project front.  Even though the market and policy pieces are not there yet for broad deployment, considerable and important progress is being made in capturing CO2 from large applications and injecting it underground. As recently as 2008, we routinely spoke of a handful or so of CCS flagship projects. Despite some project cancellations over the past year, which are normal events in the project development world, the number of operational and soon-to-be-operational CCS projects has grown significantly.

Since 2008, the number of large-scale integrated projects that are operating has doubled from six to twelve. Four commenced operation in 2013 alone, and three of these are in the U.S.  Eight more projects are either under construction or about to begin, and are expected to become operational in 2014 and 2015.  Several more are in the permitting or investment decision phase.

And the winner is…

North America. The Institute identifies the U.S. and Canada as the two countries where CCS pilot project development is most prolific at the moment (see p.36-37). The region is hosting several of these projects as a result of government support for the technology, opportunities to pursue enhanced oil recovery alongside the projects, and sufficient technical and regulatory know-how. Several projects have come online recently, and more will be doing so shortly, including power sector projects. These include the Kemper County IGCC (MS), Boundary Dam (SK), Air Products (TX), Coffeyville (KS), Lost Cabin (WY), Texas Clean Energy Project (TX), Alberta Trunkline (AB), Shell Quest (AB) and others (more details in the report). We should keep this in perspective though.

The commendable progress on these pilot plants should not be an excuse for us to take our eyes off the real goal. We are still a long way off the pace and scale of CCS development needed to curb carbon pollution in a meaningful way, and the Institute underscores this. Government funding alone will not achieve this – we need accompanying limits on emissions and emission performance standards such as those being contemplated by EPA right now.


What then should be the main take-away from the report? Unquestionably, that governments – not scientists or engineers – have the most work to do to make CCS a reality more broadly. Stakeholders have to help governments move faster. In the meantime however, let’s not overlook the significant progress that is being made by pilot and commercial-scale projects. The fleet is growing and field results continue to be positive. But we must move even faster to safeguard our atmosphere.

ENGO Perspectives Included in New Report


This post was written by Chris Smith, coordinator of the ENGO Network on CCS. 

North America is a leader in the development and deployment of carbon capture and storage with seven of the world’s 12 operational large-scale integrated projects located in the United States and one in Canada, according to a new report released by the Global CCS Institute.

Even with these projects, “The Global Status of CCS: 2013 Report” acknowledges that global momentum has been too slow if CCS is to play a significant part in combating climate change at the lowest costs.

Chapter topics in the report include policy, legal and regulatory developments, the business case, and public engagement, which features the ENGO Network on CCS. This chapter includes a section called “Improving Communication and Collaboration” and states that environmental nongovernment organisations (ENGOs) “tend to be highly influential advocates because they are generally perceived as independent, credible, and motivated to act in the best interests of the public (Terwel et al., 2011). As such, it is in the best interests of ENGOs and CCS proponents to engage in an ongoing dialogue and find common goals in working toward the broader climate change mitigation objective.”

In a sidebar, ZERO's Camilla Svendsen Skriung explains our ENGO Network on CCS approach: “As would be expected, our organisations approached CCS with caution … after a long and careful study of the available science, we have concluded that CCS can be carried out safely and effectively, provided it is adequately regulated. Our conclusions are based on, and are backed by, an overwhelming consensus of the scientific literature and prominent research institutions.”

The Global CCS Institute released the report today at its annual international members’ meeting in Seoul, North Korea. ENGO Member David Hawkins of the Natural Resources Defense Council is attending the meeting and will write a blog summary from his perspective, so be sure to visit this site again soon.

CCS is Real and It Works


This post was written by Ida Sofia Vaa, web journalist for ZERO, who writes about CCS-related topics for She has project management experience from higher education and research organisations in Norway and the U.S., from freelance writing and translations and the feminist radio station RadiOrakel in Oslo. She is currently located in Hanover, New Hampshire.


Carbon capture and storage (CCS) is still viewed by some as only a theoretical solution to creating cleaner energy and industry, but the technology is already here and has been used for years. This is not rocket science; the technology is quite straightforward. Any engineer will tell you that CCS is basic knowledge within the scientific community. So the issue is not the lack of technology or experience, but the lack of commitment from policymakers to push for CCS in all industries using fossil fuels. The ENGO Network on CCS’s goal is to inform and influence decisions makers to make policies that support a more widespread use of CCS where it works best.


CCS has been around for decades. The first CCS project was established in Lubbock, Texas, in the early eighties This was the first gas plant with carbon dioxide (CO2) capture, selling CO2 for beverages and for Enhanced Oil Recovery (EOR), and there have been several successful CCS projects around the world since then. In fact, oil companies have injected and geologically trapped more than a billion tons of CO2 over the last four decades. And as CCS is beginning to be applied to electricity generation, commercial vendors are now offering performance gauntness for carbon capture on power plants.


Canada is one of the leading countries when it comes to CCS, and the North American-based projects Great Plains Synfuels Plant (Dakota Gas) and Weyburn-Midale CO2 Project (Cenovus and Apache Energy), are some of the largest projects today. Synfuels began to capture carbon in 2000 to supply the Weyburn field with CO2 for EOR. Great Plains Synfuels plant uses a pre-combustion technique to capture 3 million tonnes of CO2 per year, and Weyburn-Midale stores up to 30 million tonnes of CO2.


Another large and successful project is the one in Shute Creek, Wyoming. The operation in Shute Creek started in 1996, and now captures 7 million tonnes of CO2 every year from natural gas. The CO2 is transported to several oil and gas refineries for EOR, especially to Salt Creek, which is the largest EOR project in the US.


Air Products in Port Arthur, Texas began carbon capture in 2011 and is a project that mitigates the CO2 emissions from an industrial application, in this case hydrogen. It is one of several examples of industry, like cement and steel too, taking care of its greenhouse gases (GHG) the only way possible, namely using CCS technology. This project captures 1 million tonnes of CO2 per year, and the CO2 is used for EOR projects.


There are two CCS power projects under construction that are slated to begin in 2014. SaskPower is retrofitting CCS onto its existing Boundary Dam plant,120MW unit that will capture 1 million tons per year. Southern Company is building a new power plant that will capture more than 2 million tons per year. Both projects are using EOR for storage.


Not all CO2 is can be used for EOR though, most of it has to be stored offshore or underground without being used at all. CO2 used for EOR has to be permanently stored at the end of operation as well. One of the largest storage projects outside North America is the Sleipner field off the coast of Norway. Statoil has captured CO2 since 1996 and stores it 800 meters under the seabed. The storage site has been continuously monitored for safety reasons, but also for researchers to learn how the CO2 behaves under pressure beneath the sea. The Sleipner field has stored more than 15 million tonnes of CO2 since startup.


The experience and knowledge gathered from these and other projects around the world only confirms that CCS is working, and it is working well.


Another pushback on CCS relates to cost. The technology is expensive to implement, and may add extra costs for the retailers who buy energy from fossil fuels. The cost depends on the type of emission, the capture technology used, the distance to the storage site, the qualities of the storage site, whether the emission source is built with capture from day one or capture is retrofitted to an existing emission source, and variable costs like prices on materials and availability of real estate. The greatest expense relates to its application to power and industrial sources that are at the beginning of the cost/experience curve. While the technology has been used on sources like natural as processing for decades, it has only recently begun to be used on sources such as power plants.


The cost decreases when the technology becomes more widespread and so will the energy loss. Building common infrastructures for storage that can be used by many different emission sources reduces costs of storage. Improvements in technology increase efficiency and reduce costs.


CCS today is dependent on some level of government subsidy or other kinds of support to be economically feasible. However, as with all technologies, as new projects are built, the costs will go down. In order to move these technologies off of subsidies, it is important to set emission standards or CO2 prices at a level that will drive deployment. By using national, regional and global policy measures, we can create a virtuous circle, where emission/CO2 price levels help drive deployment, which drive costs down, which in turn catalyzes broader market and regulatory and drivers – to the point where CCS is widely deployed on a global scale.


Questioning CCS technology is no longer an excuse to not implement CCS for industries where fossil fuels are being used.   


ENGO Network Meeting in Scotland


This post was written by Chris Smith, coordinator of the ENGO Network on CCS. It originally appeared May 31, 2013 on Insights, a GCCSI online publication.

Members of the ENGO Network on CCS gathered last week in Edinburgh, Scotland, for their annual retreat, which coincided with the launch of Moving CCS Forward in Europe, a white paper examining the current status of CCS in Europe, why policy efforts have stalled and recommendations for improving momentum.

Lead author Chris Littlecott with E3G talked about the paper and how environmental NGOs could help advance public and political dialogue during a panel session on communicating CCS at Thursday’s Global CCS Institute Europe, Middle East and Africa Members' Meeting.

“To move CCS forward in Europe, we need to look beyond the limits of the current bureaucratic imagination,” Littlecott said, adding that politicians and policymakers could benefit from creation of new policies focusing on how CCS could boost low-carbon competitiveness and job retention.

ENGO members from Bellona Foundation and ZERO are co-contributors to the report, which also includes ideas on how EU-wide and Member States policy incentives could work together to accelerate action on CCS, as well as a look at how Norway might be able to cooperate further with the EU given its established CCS leadership aspirations.

Points of emphasis made at the ENGO retreat also seemed to parallel those made by speakers at the Institute's meeting. For example, discussions at both meetings included comments lamenting the lack of global political leadership around CCS; a recognition that public understanding of this technology could be improved through better and increased communication; and a collaborative desire to propagate messaging surrounding CCS’s integral role in overall energy and renewables discourse.

So what did we take away from our Scotland retreat and and the Institute's meeting? Comments and impressions include the following:

  • Perhaps the most important recurring theme to come out of the Institute's Members' Meeting in Edinburgh this year has been the pressing need for strong political leadership on CCS. Through targeted international collaboration and information sharing, the ENGO Network is working to address this need. It's goal: to work with political decision makers and other key stakeholders to provide the political commitment and regulatory frameworks so desperately needed to unlock investment in CCS.

  • Procrastination on CCS now will greatly reduce the performance and even the possibility of reaching effective climate goals later.

  • The ENGO retreat is a priceless experience to connect, learn, and collaborate with colleagues from around the world. The retreat framed my NGO work in an international context and I was able to learn from the experiences of other nations’ initiatives and regulatory experiences.

  • It is worthwhile noting that both meetings included discussion on the potential for emissions performance standards to be a critical driver of CCS.

  • We need to talk more about the role CCS can play in helping the natural gas sector reduce emissions.

My favorite quotes were from former executive director of the International Energy Agency’s Claude Mandil, who gave closing remarks at the Institute's meeting and a call to action for all attendees: “Be consistent, insistent and persistent. There is absolutely no future without CCS being a part of it.”